

SWIG Users Guide

The SWIG Preprocessor

116

The SWIG Preprocessor 8
Introduction
Before an interface file is processed by SWIG, it is first processed by the SWIG preprocessor1. The
SWIG preprocessor closely mimics its C counterpart, in that it handles conditional compilation,
file inclusion, and macro expansion. However, it differs from the normal C preprocessor in that it
leaves comments intact (for the documentation system), allows preprocessing to be disabled, and
doesn’t introduce quite as much clutter as you would normally get running a header file through
the C preprocessor.

Preprocessing steps
The following steps are performed by the SWIG preprocessor :

• Trigraph sequences are replaced by the equivalents. This is disabled by default, but can
be enabled by running SWIG with the -trigraphs option.

• Conditional compilation.
• File inclusion with %include, %extern, and %import directives.
• Macro expansion.

While preprocesing closely mimics that of C, the following C preprocessor directives are ignored:

• #include
• #line
• #error
• #pragma
• #import

To find out what the preprocessor is doing, use the command ‘swig -E’. This will output the
results of preprocessing to stdout.

Scope of preprocessing
Preprocessing is applied to all portions of an interface file except to

• Code included inside a %{,%} block.
• C preprocessor directives preceded by a %.

1. The SWIG preprocessor is new in SWIG 1.2.
Version 1.2, August 13, 1997

SWIG Users Guide

The SWIG Preprocessor

117

This first rule is necessary because %{,%} is used to insert supporting C code into SWIG’s output.
C preprocessor directives appearing here are used during the compilation of the SWIG generated
wrapper code, not during the interface generation process. The second rule can be used to force a
directive to pass through the preprocessor unchanged. This is sometimes necessary in code frag-
ments such as the following :

%addmethod Foo {
void bar(double x) {

%#ifdef DEBUG
printf(“Value = %g\n”, x);

%#endif
}

};

Normally this code is processed by the SWIG preprocessor and all preprocessor directives
stripped. However, in this case, the output after preprocessing will be :

%addmethod Foo {
void bar(double x) {

#ifdef DEBUG
printf(“Value = %g\n”, x);

#endif
}

};

The C preprocessor directives will now appear in the wrapper code generated by SWIG.

Defining macros
Macros can be defined using the #define directive. The rules are the same as for the C prepro-
cessor except that simple constants such as

#define PI 3.14159

are passed through to the SWIG parser where they are turned into scripting language constants.
Macros with arguments can also be defined such as :

#define ADD(a,b) a+b

These macros will be expanded by the SWIG preprocessor when appropriate, but they are
ignored during the creation of wrapper code. When defining macros, the # and ## operators
may be used to create strings and perform concatenation. For example :

#define STRING(a) #a

will generate the string “a”, and

#define CONCAT(a,b) a ## b

will generate the symbol ab.

Macros can be undefined using the #undef directive.
Version 1.2, August 13, 1997

SWIG Users Guide

The SWIG Preprocessor

118

Conditional compilation
Conditional compilation can be performed using the #ifdef, #ifndef, #else, #endif, #if,
and #elif directives in exactly the same manner as in the C preprocessor. For the #if and
#elif directives, a constant integral expression can be evaluated to determine truth. The
defined() macro can also be used to determine if a symbol has been defined. For example :

#if ((MAJOR_VERSION == 2) && (MINOR_VERSION == 1)) || defined(__STDC__)
...
#endif

Of course, I’m assuming that you’re intimately familar with the C preprocessor already....

Predefined symbols
The following symbols are defined by SWIG :

__STDC__ Always defined (indicates that SWIG supports ANSI)
__cplusplus Defined when the -c++ option has been given.
__FILE__ Name of the SWIG interface file being processed.
__DATE__ A string literal containing the date of compilation.
__TIME__ A string literal containing the time of compilation.
SWIG Always defined when SWIG is processing a file
SWIGTCL Defined when using Tcl
SWIGTCL8 Defined when using Tcl8.0
SWIGPERL Defined when using Perl
SWIGPERL4 Defined when using Perl4
SWIGPERL5 Defined when using Perl5
SWIGPYTHON Defined when using Python
SWIGGUILE Defined when using Guile
SWIGWIN Defined when running SWIG under Windows
SWIGMAC Defined when running SWIG on the Macintosh

Common uses for macros
Since SWIG is primarily concerned with C declarations, not C code, macros may have a much
more limited use in SWIG than might be the case in a full C program. However, here are a few
useful tricks that can be used.

Processing complicated header files
With macros, SWIG can process header files such as the following :

#ifdef __STDC__
#define _ANSI_ARGS_(a) a
#endif
#define EXTERN extern
...
EXTERN void foo _ANSI_ARGS((double x, double y));
Version 1.2, August 13, 1997

SWIG Users Guide

The SWIG Preprocessor

119

Wrapping C++ templates
The problem with templates is that SWIG is only able to wrap a specific instantiation of a tem-
plate. One useful trick for doing this is described in chapter 3, but we can extend it with a
macro as follows :

%{
#include “list.h”
%}

// Now define a macro that mirrors the template class definition
#define LIST_TEMPLATE(name,type) \
%{\
typedef List<type> name; \
%}\
class name {\
public:\
 name();\
 ~name();\
 void append(type); \
 int length(); \
 type get(int n); \
};

// Now create wrappers around a bunch of different lists
LIST_TEMPLATE(IntList,int)
LIST_TEMPLATE(DoubleList,double)
LIST_TEMPLATE(VectorList, Vector *)
LIST_TEMPLATE(StringList,char *)

Certainly not the most elegant approach, but remarkably simple considering that SWIG does not
yet have full template support.

Cool tricks and avoidance of code duplication
Macros can also be used for avoiding code duplication and performing other cool operations.
For example, here’s a method for producing array helper functions for any datatype :

#define MAKE_NAME(a,b) a ## b
#define ARRAY_HELP(name,type) \
%inline %{ \
type *MAKE_NAME(new_,name)(int size) { \
 return (type *) malloc(size*sizeof(type)); \
} \
void MAKE_NAME(delete_,name)(type *obj) { \
 free((char *) obj); \
} \
\
type *MAKE_NAME(get_,name)(type *obj, int index) { \
 return obj+index; \
}\
void MAKE_NAME(set_,name)(type *obj, int index, type value) { \
 obj[index] = value; \
}\
%}

// Now provide a bunch of helper functions for arrays
Version 1.2, August 13, 1997

SWIG Users Guide

The SWIG Preprocessor

120

ARRAY_HELP(double,double)
ARRAY_HELP(int,int)
ARRAY_HELP(VectorPtr, Vector *)

Similar tricks can also be performed when defining typemaps and exception handlers.

The obfuscated SWIG code contest?
While I will probably live to regret adding macro support, it provides a very powerful mecha-
nism for developers of SWIG library files, working with large nasty systems, creating virtually
unintelligible interface files, or simply blowing your whole leg off. Have fun!
Version 1.2, August 13, 1997

	The SWIG Preprocessor
	Introduction
	Preprocessing steps
	Scope of preprocessing
	Defining macros
	Conditional compilation
	Predefined symbols
	Common uses for macros
	Processing complicated header files
	Wrapping C++ templates
	Cool tricks and avoidance of code duplication
	The obfuscated SWIG code contest?

