SWIG Users Guide The SWIG Preprocessor 116

The SWIG Preprocessor

Introduction

Before an interface file is processed by SWIG, it is first processed by the SWIG preprocessorl. The
SWIG preprocessor closely mimics its C counterpart, in that it handles conditional compilation,
file inclusion, and macro expansion. However, it differs from the normal C preprocessor in that it
leaves comments intact (for the documentation system), allows preprocessing to be disabled, and
doesn’t introduce quite as much clutter as you would normally get running a header file through
the C preprocessor.

Preprocessing steps

The following steps are performed by the SWIG preprocessor :

< Trigraph sequences are replaced by the equivalents. This is disabled by default, but can
be enabled by running SWIG with the - t ri gr aphs option.

= Conditional compilation.

= File inclusion with % ncl ude, %ext er n, and % nport directives.

= Macro expansion.

While preprocesing closely mimics that of C, the following C preprocessor directives are ignored:

e #include

e #line

* #error
e #pragm
e #inport

To find out what the preprocessor is doing, use the command ‘swi g - E’. This will output the
results of preprocessing to stdout.

Scope of preprocessing

Preprocessing is applied to all portions of an interface file except to

= Codeincluded inside a % , %4 block.
= C preprocessor directives preceded by a %.

1. The SWIG preprocessor is hew in SWIG 1.2.

Version 1.2, August 13, 1997

SWIG Users Guide The SWIG Preprocessor 117

This first rule is necessary because %{,%} is used to insert supporting C code into SWIG’s output.
C preprocessor directives appearing here are used during the compilation of the SWIG generated
wrapper code, not during the interface generation process. The second rule can be used to force a
directive to pass through the preprocessor unchanged. This is sometimes necessary in code frag-
ments such as the following :

%ddnet hod Foo {
voi d bar (doubl e x) {
o%ti f def DEBUG
printf(“Value = %g\n", Xx);
%tendi f

}
}s

Normally this code is processed by the SWIG preprocessor and all preprocessor directives
stripped. However, in this case, the output after preprocessing will be :

%ddnet hod Foo {
voi d bar (doubl e x) {
#i f def DEBUG
printf(“Value = %g\n", X);
#endi f
}
b

The C preprocessor directives will now appear in the wrapper code generated by SWIG.

Defining macros

Macros can be defined using the #def i ne directive. The rules are the same as for the C prepro-
cessor except that simple constants such as

#define Pl 3.14159

are passed through to the SWIG parser where they are turned into scripting language constants.
Macros with arguments can also be defined such as :

#define ADD(a, b) atb

These macros will be expanded by the SWIG preprocessor when appropriate, but they are
ignored during the creation of wrapper code. When defining macros, the # and ## operators
may be used to create strings and perform concatenation. For example :

#defi ne STR NJ a) #a
will generate the string “a”, and
#def i ne CONCAT(a, b) a#fthb

will generate the symbol ab.

Macros can be undefined using the #undef directive.

Version 1.2, August 13, 1997

SWIG Users Guide The SWIG Preprocessor 118

Conditional compilation

Conditional compilation can be performed using the #i f def , #i f ndef , #el se, #endi f, #i f,
and #el i f directives in exactly the same manner as in the C preprocessor. For the #i f and
#el i f directives, a constant integral expression can be evaluated to determine truth. The
defi ned() macro can also be used to determine if a symbol has been defined. For example :

#if ((MMIORVERSION == 2) & (M NOR_VERSION == 1)) || defined(__STDC)
#endi f

Of course, I’'m assuming that you’re intimately familar with the C preprocessor already....

Predefined symbols
The following symbols are defined by SWIG :

__SIbC A ways defined (indicates that SWG supports ANSI)
__cpl uspl us Defined when the -c++ option has been given.
__FILE _ Nane of the SWGinterface file being processed.

_ DATE A string literal containing the date of conpilation.
_TIME__ A string literal containing the tine of conpilation.
SWG A ways defined when SWGis processing a file

SW GIcL Defi ned when using Tcl

SW GICL8 Defi ned when using Tcl 8.0

SW GPERL Defi ned when using Perl

SW GPERL4 Def i ned when using Perl 4

SW GPERLS Defi ned when using Perl5

SW GPYTHON Defi ned when using Pyt hon

SWQGJ LE Defined when using Quile

SWGN N Defi ned when runni ng SWG under W ndows

SWGWAC Def i ned when running SWG on the Maci nt osh

Common uses for macros

Since SWIG is primarily concerned with C declarations, not C code, macros may have a much
more limited use in SWIG than might be the case in a full C program. However, here are a few
useful tricks that can be used.

Processing complicated header files
With macros, SWIG can process header files such as the following :

#ifdef _ STDC

#define _ANSI _ARGS (a) a
#endi f

#defi ne EXTERN extern

EXTERN voi d foo _ANSI _ARGS((doubl e x, double y));

Version 1.2, August 13, 1997

SWIG Users Guide The SWIG Preprocessor 119

Wrapping C++ templates

The problem with templates is that SWIG is only able to wrap a specific instantiation of a tem-
plate. One useful trick for doing this is described in chapter 3, but we can extend it with a
macro as follows :

%
#include “list.h”

%

// Now define a nacro that nirrors the tenplate class definition
#defi ne LI ST_TEMPLATE(narre, t ype) \
%\
typedef List<type> nane; \
%\
cl ass nane {\
public:\
name();\
~name() ; \
voi d append(type); \
int length(); \
type get(int n); \
b

// Now create wappers around a bunch of different lists
LI ST_TEMPLATE(I nt Li st, i nt)

LI ST_TEMPLATE(Doubl eLi st , doubl €)

LI ST_TEMPLATE(Vect or Li st, Vector *)

LI ST_TEMPLATE(Stri ngLi st, char *)

Certainly not the most elegant approach, but remarkably simple considering that SWIG does not
yet have full template support.

Cool tricks and avoidance of code duplication

Macros can also be used for avoiding code duplication and performing other cool operations.
For example, here’s a method for producing array helper functions for any datatype :

#def i ne MAKE_NAME(a, b) a##thb
#def i ne ARRAY_HELP(nane, type) \
%nline %4 \
type *MAKE _NAME(new , name) (int size) { \
return (type *) mall oc(size*sizeof (type)); \

voi d MAKE NAME(del ete_, nane) (type *obj) { \
free((char *) obj); \

type *MAKE NAMVE(get_, nane) (type *obj, int index) { \
return obj +i ndex; \

Ja

voi d MAKE _NAME(set _, nane) (type *obj, int index, type value) { \
obj [i ndex] = val ue; \

Ja

%

/1 Now provide a bunch of hel per functions for arrays

Version 1.2, August 13, 1997

SWIG Users Guide The SWIG Preprocessor 120

ARRAY_HEL P(doubl e, doubl e)
ARRAY HELP(int,int)
ARRAY_HELP(VectorPtr, Vector *)

Similar tricks can also be performed when defining typemaps and exception handlers.

The obfuscated SWIG code contest?

While I will probably live to regret adding macro support, it provides a very powerful mecha-
nism for developers of SWIG library files, working with large nasty systems, creating virtually
unintelligible interface files, or simply blowing your whole leg off. Have fun!

Version 1.2, August 13, 1997

	The SWIG Preprocessor
	Introduction
	Preprocessing steps
	Scope of preprocessing
	Defining macros
	Conditional compilation
	Predefined symbols
	Common uses for macros
	Processing complicated header files
	Wrapping C++ templates
	Cool tricks and avoidance of code duplication
	The obfuscated SWIG code contest?

