GNU dbm

A Database Manager

by Philip A. Nelson, Jason Downs and Sergey Poznyakoff

Manual by Pierre Gaumond, Philip A. Nelson, Jason Downs
and Sergey Poznyakoff

Edition 1.9.1

for GNU dbm, Version 1.9.1

Copyright (©) 1993-1999, 2007-2011 Free Software Foundation, Inc.

This is Edition 1.9.1 of the GNU dbm Manual, for gdbm Version 1.9.1.
Last updated 1 March 2012

Published by the Free Software Foundation
675 Massachusetts Avenue,
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Short Contents

O 0 J O O = W N

N NN P /= = = = == =
_ O © 00~ O U W NN = O

Copying Conditions.t 1
Introduction to GNU dbm. 2
List of functions.. o 3
Opening the database. 4
Closing the database. i, 5
Inserting and replacing records in the database.............. 6
Searching for records in the database...................... 7
Removing records from the database. 8
Sequential access torecords. 9
Database reorganization., 11
Database Synchronization 12
Export and Import 13
Error strings. e 14
Setting options 15
File Locking. oo 18
Test and modify a GDBM database...................... 19
Export a database into a portable format. 22
Useful global variables.......... o ... 23
Error codes 25
Compatibility with standard dbm and ndbm. 27
Problems and bugs. 31
Additional TeSOUrces oottt e 32
GNU Free Documentation License....................... 33

Table of Contents

1 Copying Conditions............................. 1
2 Introduction to GNU dbm....................... 2
3 List of functions................... 3
4 Opening the database........................... 4
5 Closing the database............................ 5
6 Inserting and replacing records in the
database........... L. 6
7 Searching for records in the database. 7
8 Removing records from the database.......... 8
9 Sequential access torecords.................... 9
10 Database reorganization. 11
11 Database Synchronization................... 12
12 Export and Import........................... 13
13 Error strings................... 14
14 Settingoptions............................... 15
15 File Locking................................... 18
16 Test and modify a GDBM database. 19
16.1 testgdbm iVOCALION'vee ettt 19
16.2 testgdbm interactive modec.oveeeeeeeeeieenn., 19
17 Export a database into a portable format.

ii

18 Useful global variables. 23
19 Errorcodes................., 25

20 Compatibility with standard dbm and ndbm.

.. 27

20.1 NDBM interface functions. 27
20.2 DBM interface functions.............ouiiiiei.. 29
21 Problems and bugs........................... 31
22 Additional resources 32

Appendix A GNU Free Documentation License
.. 33

iii

Chapter 1: Copying Conditions. 1

1 Copying Conditions.

This library is free; this means that everyone is free to use it and free to redistribute it
on a free basis. GNU dbm (gdbm) is not in the public domain; it is copyrighted and there
are restrictions on its distribution, but these restrictions are designed to permit everything
that a good cooperating citizen would want to do. What is not allowed is to try to prevent
others from further sharing any version of gdbm that they might get from you.

Specifically, we want to make sure that you have the right to give away copies gdbm, that
you receive source code or else can get it if you want it, that you can change these functions
or use pieces of them in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies gdbm, you must give the recipients all
the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there
is no warranty for anything in the gdbm distribution. If these functions are modified by
someone else and passed on, we want their recipients to know that what they have is not
what we distributed, so that any problems introduced by others will not reflect on our
reputation.

Gdbm is currently distributed under the terms of the GNU General Public License, Version
3. (NOT under the GNU General Library Public License.) A copy the GNU General Public
License is included with the distribution of gdbm.

Chapter 2: Introduction to GNU dbm. 2

2 Introduction to GNU dbm.

GNU dbm (gdbm) is a library of database functions that use extensible hashing and works
similar to the standard UNIX dbm functions. These routines are provided to a programmer
needing to create and manipulate a hashed database. (gdbm is NOT a complete database
package for an end user.)

The basic use of gdbm is to store key/data pairs in a data file. Each key must be unique
and each key is paired with only one data item. The keys can not be directly accessed in
sorted order. The basic unit of data in gdbm is the structure:

typedef struct {
char *dptr;
int dsize;
} datum;
This structure allows for arbitrary sized keys and data items.

The key/data pairs are stored in a gdbm disk file, called a gdbm database. An application
must open a gdbm database to be able manipulate the keys and data contained in the
database. gdbm allows an application to have multiple databases open at the same time.
When an application opens a gdbm database, it is designated as a reader or a writer. A
gdbm database can be opened by at most one writer at a time. However, many readers may
open the database simultaneously. Readers and writers can not open the gdbm database at
the same time.

Chapter 3: List of functions. 3

3 List of functions.

The following is a quick list of the functions contained in the gdbm library. The include file
gdbm.h, that can be included by the user, contains a definition of these functions.

#include <gdbm.h>

GDBM_FILE gdbm_open(name, block_size, flags, mode, fatal_func);
void gdbm_close(dbf);

int gdbm_store(dbf, key, content, flag);
datum gdbm_fetch(dbf, key);

int gdbm_delete(dbf, key);

datum gdbm_firstkey(dbf);

datum gdbm_nextkey(dbf, key);

int gdbm_reorganize(dbf);

void gdbm_sync (dbf);

int gdbm_exists(dbf, key);

char *gdbm_strerror(errno) ;

int gdbm_setopt(dbf, option, value, size);
int gdbm_fdesc(dbf);

The gdbm.h include file is often in the ‘/usr/local/include’ directory. (The actual
location of gdbm.h depends on your local installation of gdbm.)

Chapter 4: Opening the database. 4

4 Opening the database.

GDBM_FILE gdbm_open (const char *name, int block_size, int [gdbm interface]
flags, int mode, void (*fatal_func)(const char *))
Initializes gdbm system. If the file has a size of zero bytes, a file initialization procedure
is performed, setting up the initial structure in the file.

The arguments are:

name

block_size

flags

mode

fatal_func

The name of the file (the complete name, gdbm does not append any
characters to this name).

It is used during initialization to determine the size of various constructs.
It is the size of a single transfer from disk to memory. This parameter
is ignored if the file has been previously initialized. The minimum size
is 512. If the value is less than 512, the file system block size is used,
otherwise the value of block_size is used.

If flags is set to ‘GDBM_READER’, the user wants to just read the database
and any call to gdbm_store or gdbm_delete will fail. Many readers can
access the database at the same time. If flags is set to ‘GDBM_WRITER’,
the user wants both read and write access to the database and requires
exclusive access. If flags is set to ‘GDBM_WRCREAT’, the user wants both
read and write access to the database and wants it created if it does
not already exist. If flags is set to ‘GDBM_NEWDB’, the user want a new
database created, regardless of whether one existed, and wants read and
write access to the new database.

The following may also be logically or’d into the database flags:
‘GDBM_SYNC’, which causes all database operations to be synchronized
to the disk, ‘GDBM_NOLOCK’, which prevents the library from performing
any locking on the database file, and ‘GDBM_NOMMAP’, which disables the
memory mapping mechanism. The option ‘GDBM_FAST’ is now obsolete,
since gdbm defaults to no-sync mode. Any error detected will cause a
return value of ‘NULL’ and an appropriate value will be in gdbm_errno
(see Chapter 18 [Variables|, page 23). If no errors occur, a pointer to the
gdbm file descriptor will be returned.

File mode (see section “change permissions of a file” in chmod(2) man
page, and see section “open a file” in open(2) man page), which is used
if the file is created).

A function for gdbm to call if it detects a fatal error. The only parameter

of this function is a string. If the value of ‘NULL’ is provided, gdbm will
use a default function.

The return value, is the pointer needed by all other functions to access that gdbm file.
If the return is the ‘NULL’ pointer, gdbm_open was not successful. The errors can be
found in gdbm_errno variable (see Chapter 18 [Variables], page 23). Available error
codes are discussed in Chapter 19 [Error codes|, page 25.

In all of the following calls, the parameter dbf refers to the pointer returned from

gdbm_open.

Chapter 5: Closing the database. 5

5 Closing the database.

It is important that every file opened is also closed. This is needed to update the
reader /writer count on the file:

void gdbm_close (GDBM_FILE dbf) [gdbm interface]
This function closes the gdbm file and frees all memory associated with it. The pa-
rameter is:

dbf The pointer returned by gdbm_open.

Chapter 6: Inserting and replacing records in the database. 6

6 Inserting and replacing records in the database.

int gdbm_store (GDBM_FILE dbf, datum key, datum content, [gdbm interface]
int flag)
The function gdbm_store inserts or replaces records in the database.

The parameters are:

dbf The pointer returned by gdbm_open.
key The search key.

content The data to be associated with the key.

flag Defines the action to take when the key is already in the database. The
value ‘GDBM_REPLACE’ (defined in ‘gdbm.h’) asks that the old data be
replaced by the new content. The value ‘GDBM_INSERT’ asks that an error
be returned and no action taken if the key already exists.

This function can return the following values:

-1 The item was not stored in the database because the caller was not an
official writer or either key or content have a ‘NULL’ ‘dptr’ field.

Both key and content must have the ‘dptr’ field be a non-‘NULL’ value.
Since a ‘NULL’ ‘dptr’ field is used by other functions to indicate an error,
it cannot be valid data.

+1 The item was not stored because the argument flag was ‘GDBM_INSERT’
and the key was already in the database.

0 No error. The value of content is keyed by key. The file on disk is
updated to reflect the structure of the new database before returning
from this function.

If you store data for a key that is already in the data base, gdbm replaces the old data
with the new data if called with ‘GDBM_REPLACE’. You do not get two data items for the
same key and you do not get an error from gdbm_store.

The size in gdbm is not restricted like dbm or ndbm. Your data can be as large as you
want.

Chapter 7: Searching for records in the database. 7

7 Searching for records in the database.

datum gdbm_fetch (GDBM_FILE dbf, datum key) [gdbm interface]
Looks up a given key and returns the information associated with it. The ‘dptr’ field
in the structure that is returned points to a memory block allocated by malloc. It is
the caller’s responsibility to free it when no longer needed.

If the ‘dptr’ is ‘NULL’, no data was found.
The parameters are:

dbf The pointer returned by gdbm_open.
key The search key.

An example of using this function:

content = gdbm_fetch (dbf, key);
if (content.dptr == NULL)

{
fprintf (stderr, "key not found\n");
b
else
{
/* do something with content.dptr */
b

You may also search for a particular key without retrieving it:

int gdbm_exists (GDBM_FILE dbf, datum key) [gdbm interface]
Returns ‘true’ (‘1’) if the key exists in dbf and ‘false’ (‘0’) otherwise.

The parameters are:
dbf The pointer returned by gdbm_open.
key The search key.

Chapter 8: Removing records from the database. 8

8 Removing records from the database.

To remove some data from the database, use the gdbm_delete function.

int gdbm_delete (GDBM_FILE dbf, datum key) [gdbm interface]
Deletes the data associated with the given key, if it exists in the database dbf. The
file on disk is updated to reflect the structure of the new database before returning
from this function.

The parameters are:
dbf The pointer returned by gdbm_open.

datum key
The search key.

The function returns ‘=1’ if the item is not present or the requester is a reader. The
return of ‘0’ marks a successful delete.

Chapter 9: Sequential access to records. 9

9 Sequential access to records.

The next two functions allow for accessing all items in the database. This access is not
key sequential, but it is guaranteed to visit every key in the database once. The order has
to do with the hash values. gdbm_firstkey starts the visit of all keys in the database.
gdbm_nextkey finds and reads the next entry in the hash structure for dbf.

datum gdbm_firstkey (GDBM_FILE dbf) [gdbm interface]
Initiate sequential access to the database dbf. The returned value is the first key
accessed in the database. If the ‘dptr’ field in the returned datum is ‘NULL’, the
database contains no data.

Otherwise, ‘dptr’ points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

datum gdbm_nextkey (GDBM_FILE dbf, datum prev) [gdbm interface]
This function continues the iteration over the keys in dbf, initiated by gdbm_firstkey.
The parameter prev holds the value returned from a previous call to gdbm_nextkey
or gdbm_firstkey.
The function returns next key from the database. If the ‘dptr’ field in the returned
datum is ‘NULL’, all keys in the database has been visited.
Otherwise, ‘dptr’ points to a memory block obtained from malloc, which holds the
key value. The caller is responsible for freeing this memory block when no longer
needed.

These functions were intended to visit the database in read-only algorithms, for instance,
to validate the database or similar operations. The usual algorithm for sequential access is:
key = gdbm_firstkey (dbf);
while (key.dptr)

{
datum nextkey;
/* do something with the key */
/* Obtain the next key */
nextkey = gdbm_nextkey (dbf, key);
/* Reclaim the memory used by the key */
free (key.dptr);
/* Use nextkey in the next iteration. */
key = nextkey;
}

Care should be taken when the gdbm_delete function is used in such a loop. File visiting
is based on a hash table. The gdbm_delete function re-arranges the hash table to make
sure that any collisions in the table do not leave some item un-findable. The original key
order is not guaranteed to remain unchanged in all instances. So it is possible that some
key will not be visited if a loop like the following is executed:

Chapter 9: Sequential access to records.

key = gdbm_firstkey (dbf);
while (key.dptr)
{
datum nextkey;
if (some condition)
{
gdbm_delete (dbf, key);
}
nextkey = gdbm_nextkey (dbf, key);
free (key.dptr);
key = nextkey;

10

Chapter 10: Database reorganization. 11

10 Database reorganization.

The following function should be used very seldom.

int gdbm_reorganize (GDBM_FILE dbf) [gdbm interface]
Reorganizes the database.

The parameter is:

dbf The pointer returned by gdbm_open.

If you have had a lot of deletions and would like to shrink the space used by the gdbm
file, this function will reorganize the database. This results, in particular, in shortening the
length of a gdbm file by removing the space occupied by deleted records.

This reorganization requires creating a new file and inserting all the elements in the
old file dbf into the new file. The new file is then renamed to the same name as the old
file and dbf is updated to contain all the correct information about the new file. If an
error is detected, the return value is negative. The value zero is returned after a successful
reorganization.

Chapter 11: Database Synchronization 12

11 Database Synchronization

Unless your database was opened with the ‘GDBM_SYNC’ flag, gdbm does not wait for writes
to be flushed to the disk before continuing. This allows for faster writing of databases at the
risk of having a corrupted database if the application terminates in an abnormal fashion.
The following function allows the programmer to make sure the disk version of the database
has been completely updated with all changes to the current time.

void gdbm_sync (GDBM_FILE dbf) [gdbm interface]
Synchronizes the changes in dbf with its disk file. The parameter is a pointer returned
by gdbm_open.
This function would usually be called after a complete set of changes have been
made to the database and before some long waiting time. The gdbm_close function
automatically calls the equivalent of gdbm_sync so no call is needed if the database
is to be closed immediately after the set of changes have been made.

Chapter 12: Export and Import 13

12 Export and Import

Gdbm databases can be converted into a portable flat format. This format can be used, for
example, to migrate between the different versions of gdbm databases. Generally speaking,
flat files are safe to send over the network, and can be used to recreate the database on
another machine. The recreated database is guaranteed to be a byte-to-byte equivalent of
the database from which the flat file was created. This does not necessarily mean, however,
that this file can be used in the same way as the original one. For example, if the original
database contained non-ASCII data (e.g. C structures, integers etc.), the recreated database
can be of any use only if the target machine has the same integer size and byte ordering as
the source one and if its C compiler uses the same packing conventions as the one which
generated C which populated the original database. In general, such binary databases are
not portable between machines, unless you follow some stringent rules on what data is
written to them and how it is interpreted.

int gdbm_export (GDBM_FILE dbf, const char *exportfile, [gdbm interface]
int flag, int mode)
Create a flat file from the gdbm database. The parameters are:

dbf A pointer to the source database, returned by a call to gdbm_open. The
database must be open in ‘GDBM_WRITER’ mode.

exportfile The name of the output file.

flag How to create the output file. If flag is ‘GDBM_WRCREAT’, the file will be
created if it does not exist already. Otherwise, if it is ‘GDBM_NEWDB’, it
will be created if it does not exist, and truncated otherwise.

mode The permissions to use when creating the output file. See section “open
a file” in open(2) man page, for a detailed discussion.

int gdbm_import (GDBM_FILE dbf, const char *importfile, [gdbm interface]
int flag)
Populates the database from an existing flat file.

dbf A pointer to the source database, returned by a call to gdbm_open. The
database must be open in ‘GDBM_WRITER’ mode.

importfile The name of the input flat file. The file must exist.

flag The flag argument to be passed to gdbm_store function when adding
new records. See Chapter 6 [Store], page 6, for a description of its effect.

See also Chapter 17 [gdbmexport|, page 22, [testgdbm export], page 20, and [testgdbm
import], page 20.

Chapter 13: Error strings. 14

13 Error strings.

To convert a gdbm error code into English text, use this routine:

const char * gdbm_strerror (gdbm_error errno) [gdbm interface]
Converts errno (which is an integer value) into a human-readable descriptive text.
Returns a pointer to a static string. The caller must not alter or free the returned
pointer.

The errno argument is usually the value of the global variable gdbm_errno. See
Chapter 18 [Variables], page 23.

Chapter 14: Setting options 15

14 Setting options

Gdbm supports the ability to set certain options on an already open database.

int gdbm_setopt (GDBM_FILE dbf, int option, void *value, [gdbm interface]
int size)
Sets an option on the database or returns the value of an option.

The parameters are:

dbf The pointer returned by gdbm_open.
option The option to be set or retreived.
value A pointer to the value to which option will be set or where to place the

option value (depending on the option).

size The length of the data pointed to by value.

The valid options are:

GDBM_SETCACHESIZE

GDBM_CACHESIZE
Set the size of the internal bucket cache. This option may only be set once on
each GDBM_FILE descriptor, and is set automatically to 100 upon the first
access to the database. The value should point to a size_t holding the desired
cache size.

The ‘GDBM_CACHESIZE’ option is provided for compatibility with earlier versions.

GDBM_GETCACHESIZE
Return the size of the internal bucket cache. The value should point to a size_t
variable, where the size will be stored.

GDBM_GETFLAGS
Return the flags describing the state of the database. The value should point
to a int variable where to store the flags. The return is the same as the flags
used when opening the database (see Chapter 4 [Open], page 4), except that
it reflects the current state (which may have been altered by another calls to
gdbm_setopt.

GDBM_FASTMODE
Enable or disable the fast writes mode, i.e. writes without subsequent synchro-
nization. The value should point to an integer: ‘TRUE’ to enable fast mode, and
‘FALSE’ to disable it.

This option is retained for compatibility with previous versions of gdbm. Its
effect is the reverse of GDBM_SETSYNCMODE (see below).

GDBM_SETSYNCMODE

GDBM_SYNCMODE
Turn on or off file system synchronization operations. This setting defaults to
off. The value should point to an integer: ‘TRUE’ to turn synchronization on,
and ‘FALSE’ to turn it off.

Chapter 14: Setting options 16

Note, that this option is a reverse of GDBM_FASTMODE, i.e. calling GDBM_
SETSYNCMODE with ‘TRUE’ has the same effect as calling GDBM_FASTMODE with
‘FALSE’.

The ‘GDBM_SYNCMODE’ option is provided for compatibility with earlier versions.

GDBM_GETSYNCMODE
Return the current synchronization status. The value should point to an int
where the status will be stored.

GDBM_SETCENTFREE
GDBM_CENTFREE
NOTICE: This feature is still under study.

Set central free block pool to either on or off. The default is off, which is
how previous versions of gdbm handled free blocks. If set, this option causes
all subsequent free blocks to be placed in the global pool, allowing (in theory)
more file space to be reused more quickly. The value should point to an integer:
‘TRUE’ to turn central block pool on, and ‘FALSE’ to turn it off.

The ‘GDBM_CENTFREE’ option is provided for compatibility with earlier versions.

GDBM_SETCOALESCEBLKS
GDBM_COALESCEBLKS
NOTICE: This feature is still under study.

Set free block merging to either on or off. The default is off, which is how
previous versions of gdbm handled free blocks. If set, this option causes adjacent
free blocks to be merged. This can become a CPU expensive process with time,
though, especially if used in conjunction with GDBM_CENTFREE. The value
should point to an integer: ‘TRUE’ to turn free block merging on, and ‘FALSE’
to turn it off.

GDBM_GETCOALESCEBLKS
Return the current status of free block merging. The value should point to an
int where the status will be stored.

GDBM_SETMAXMAPSIZE
Sets maximum size of a memory mapped region. The value should point to a
value of type size_t, unsigned long or unsigned. The actual value is rounded
to the nearest page boundary (the page size is obtained from sysconf (_SC_
PAGESIZE)).

GDBM_GETMAXMAPSIZE
Return the maximum size of a memory mapped region. The value should point
to a value of type size_t where to return the data.

GDBM_SETMMAP
Enable or disable memory mapping mode. The value should point to an integer:
‘TRUE’ to enable memory mapping or ‘FALSE’ to disable it.

GDBM_GETMMAP
Check whether memory mapping is enabled. The value should point to an
integer where to return the status.

Chapter 14: Setting options 17

GDBM_GETDBNAME
Return the name of the database disk file. The value should point to a variable
of type char**. A pointer to the newly allocated copy of the file name will be
placed there. The caller is responsible for freeing this memory when no longer
needed. For example:

char *name;

if (gdbm_setopt (dbf, GDBM_GETDBNAME, &name, sizeof (name)))

{
fprintf (stderr, "gdbm_setopt failed: ¥%s\n",
gdbm_strerror (gdbm_errno));
}
else
{

printf ("database name: %s\n", name);
free (name);

}

The return value will be ‘-1’ upon failure, or ‘0’ upon success. The global variable
gdbm_errno will be set upon failure.

For instance, to set a database to use a cache of 10, after opening it with gdbm_open,
but prior to accessing it in any way, the following code could be used:

int value = 10;
ret = gdbm_setopt (dbf, GDBM_CACHESIZE, &value, sizeof (int));

Chapter 15: File Locking. 18

15 File Locking.

With locking disabled (if gdbm_open was called with ‘GDBM_NOLOCK’), the user may want
to perform their own file locking on the database file in order to prevent multiple writers
operating on the same file simultaneously.

In order to support this, the gdbm_fdesc routine is provided.
int gdbm_fdesc (GDBM_FILE dbf) [gdbm interface]

Returns the file descriptor of the database dbf. This value can be used as an argument
to flock, lockf or similar calls.

Chapter 16: Test and modify a GDBM database. 19

16 Test and modify a GDBM database.

The testgdbm utility allows you to view and modify an existing GDBM database or to
create a new one.

When invoked without options, it tries to open a database file called ‘junk.gdbm’, located
in the current working directory. You can change this default using the ‘-g’ command line
option. This option takes a single argument, specifying the file name to open, e.g.:

$ testgdbm -g file.db

The database will be opened in read-write mode, unless the ‘-r’ option is specified, in
which case it will be opened only for reading.

If the database does not exist, testgdbm will create it. There is a special option ‘-n’,

which instructs the utility to create a new database. If it is used and if the database already
exists, it will be deleted, so use it sparingly.

16.1 testgdbm invocation

The following table summarizes all testgdbm command line options:
‘~b size’ Set block size.

‘-c size’ Set cache size.

‘-g file’ Operate on file instead of the default ‘junk.gdbm’.

‘~n’ Print a concise help summary.

‘-n’ Create the database.

‘-r’ Open the database in read-only mode.

‘-g’ Synchronize to the disk after each write.

‘~v’ Print program version and licensing information and exit.

16.2 testgdbm interactive mode

After successful startup, testgdbm starts a loop, in which it reads commands from the
user, executes them and prints the results on the standard output. If the standard input is
attached to a console, testgdbm runs in interactive mode, which is indicated by its prompt:

com —> _

The utility finishes when it reads the ‘g’ command (see below) or it detects end-of-file
on its standard input, whichever occurs first.

A testgdbm command consists of a command letter, optionally followed by one or two
arguments, separated by any amount of white space. An argument is any sequence of non-
whitespace characters. Notice, that currently there is no way to enter arguments containing
white space. This limitation will be removed in future releases.

Each command letter takes at most two formal parameters, which can be optional or
mandatory. If the number of actual arguments is less than the number of mandatory
parameters, testgdbm will prompt you to supply missing arguments. For example, the ‘s’
command takes two mandatory parameters, so if you invoked it with no arguments, you
would be prompted twice to supply the necessary data, as shown in example below:

Chapter 16: Test and modify a GDBM database. 20

com —> s
key -> three
data -> 3

However, such prompting is possible only in interactive mode. In non-interactive mode
(e.g. when running a script), all arguments must be supplied with each command, otherwise
testgdbm reports an error and exits immediately.

Some commands produce excessive amounts of output. To help you follow it, testgdbm
will use a pager utility to display such output. The name of the pager utility is taken from
the environment variable PAGER. The pager is invoked only in interactive mode and only if
the estimated number of output lines is greater then the number of lines on your screen.

Many of the testgdbm commands operate on database key and data values. The utility
assumes that both keys and data are ASCII strings, either nul-terminated or not. By default,
it is assumed that strings are nul-terminated. You can change this by using z (for keys)
and Z (for data) commands.

The following table summarizes all available commands:
c Print the number of entries in the database.
d key Delete entry with a given key

e file-name [truncate]
Export the database to the flat file file-name. See Chapter 12 [Flat files],
page 13, for a description of the flat file format and its purposes. This com-
mand will not overwrite an existing file, unless the word ‘truncate’ is given as
its second argument.

See also Chapter 17 [gdbmexport], page 22.
f key Fetch and display a record with the given key.

i file-name [replace]
Import data from a flat dump file file-name (see Chapter 12 [Flat files|, page 13).
If the word ‘replace’ is given as the second argument, any records with the
same keys as the already existing ones will replace them.

1 List the contents of the database (see [pager|, page 20).

n [key]

2 [keyl Sequential access: fetch and display a next record. If key is given, a record
following one with this key will be fetched. Otherwise, the key supplied by the
latest 1, 2 or n command will be used.

The second form, 2 is a synonym for n without arguments.
See also 1, below.

See Chapter 9 [Sequential], page 9, for more information on sequential access.
q Close the database and quit the utility.

s key data
Store the data with key in the database. If key already exists, its data will be
replaced.

Chapter 16: Test and modify a GDBM database. 21

Fetch and display the first record in the database. Subsequent records can be
fetched using n (or 2) command (see above). See Chapter 9 [Sequential], page 9,
for more information on sequential access.

< file [replace]

Read entries from file and store them in the database. If the word ‘replace’ is
given as the second argument, any existing records with matching keys will be
replaced.

Reorganize the database (see Chapter 10 [Reorganization|, page 11).

Toggle key nul-termination. Use S to inspect the current state. See [nul-
termination], page 20.

Print the avail list.

Print the bucket number num. This command uses pager (see [pager|, page 20).
Print the current bucket. This command uses pager (see [pager|, page 20).
Print hash directory. Uses pager (see [pager]|, page 20).

Print file header.

Compute and display the hash value for the given key.

Print the bucket cache. Uses pager (see [pager|, page 20).

Print current program status. The following example shows the information
displayed:

Database file: junk.gdbm

Zero terminated keys: yes

Zero terminated data: yes

Print the version of gdbm.

Toggle data nul-termination. Use S to examine the current status.
See [nul-termination], page 20.
Print a concise command summary, showing each command letter with its pa-

rameters and a short description of what it does. Optional arguments are
enclosed in square brackets.

Chapter 17: Export a database into a portable format. 22

17 Export a database into a portable format.

The gdbmexport utility converts the database into a portable flat format. Files in this
format can be used to populate databases using the gdbm_import function (see Chapter 12
[Flat files], page 13) or the i command of testgdbm utility (see [testgdbm import], page 20).
In many cases files in this format are suitable for sending over the network to populate the
database on another machine. The only exception to this are databases whose records
contain non-ASCII data (e.g. C structures, integers etc.). For such databases you will be
better off by writing a specialized utility to convert them to an architecture-independent
format.

If gdbmexport is linked with ‘1ibgdbm’ version 1.8.3, it can be used to convert databases
from old to new format.

The utility takes two mandatory arguments: the name of the database file to convert
and the output file name, e.g.:

$ gdbmexport junk.gdbm junk.flat
In addition two options are understood:
‘~h’ Display short usage summary and exit.

‘=v’ Display program version and licensing information, and exit.

Chapter 18: Useful global variables. 23

18 Useful global variables.

The following global variables and constants are available:

gdbm_error gdbm_errno [Variable]
This variable contains error code from the last failed gdbm call. See Chapter 19 [Error
codes|, page 25, for a list of available error codes and their descriptions.

Use gdbm_strerror (see Chapter 13 [Errors|, page 14) to convert it to a descriptive
text.

const char * gdbm_errlist[] [Variable]
This variable is an array of error descriptions, which is used by gdbm_strerror to
convert error codes to human-readable text (see Chapter 13 [Errors|, page 14). You
can access it directly, if you wish so. It contains _GDBM_MAX_ERRNO + 1 elements and
can be directly indexed by the error code to obtain a corresponding descriptive text.

_GDBM_MIN_ERRNO [Constant]
The minimum error code used by gdbm.

_GDBM_MAX_ERRNO [Constant|
The maximum error code used by gdbm.

const char * gdbm_version [Variable]
A string containing the version information.

int const gdbm_version_number [3] [Variable]
This variable contains the gdbm version numbers:

Index Meaning

0 Major number

1 Minor number

2 Patchlevel number

Additionally, the following constants are defined in the ‘gdbm.h’ file:
GDBM_VERSION_MAJOR

Major number.

GDBM_VERSION_MINOR

Minor number.

GDBM_VERSION_PATCH
Patchlevel number.

These can be used to verify whether the header file matches the library.
To compare two split-out version numbers, use the following function:

int gdbm_version_cmp (int const a[3|, int const b[3]) [gdbm interface]
Compare two version numbers. Return ‘-1’ if a is less than b, ‘1’ if a is greater than
b and ‘0’ if they are equal.

Comparison is done from left to right, so that:

Chapter 18: Useful global variables.

a={1,8, 31}
b={1,8,31%}
gdbm_version_cmp (a, b) = 0

a=1{1,8, 31}
b={1,8, 2};
gdbm_version_cmp (a, b) = 1

a=9{1,8, 373
b=4{1,9. 013}
gdbm_version_cmp (a, b) = -1

24

Chapter 19: Error codes 25

19 Error codes

This chapter summarizes the error codes which can be set by the functions in gdbm library.

GDBM_NO_ERROR
No error occurred.

GDBM_MALLOC_ERROR
Memory allocation failed. Not enough memory.

GDBM_BLOCK_SIZE_ERROR
This error is set by the gdbm_open function (see Chapter 4 [Open], page 4), if
the value of its block_size argument is incorrect.

GDBM_FILE_OPEN_ERROR
The library was not able to open a disk file. This can be set by gdbm_open
(see Chapter 4 [Open]|, page 4), gdbm_export and gdbm_import functions (see
Chapter 12 [Flat files], page 13).

GDBM_FILE_-WRITE_ERROR
Writing to a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open], page 4), gdbm_export and gdbm_import functions.

GDBM_FILE_SEEK_ERROR
Positioning in a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open], page 4) function.

GDBM_FILE_READ_ERROR
Reading from a disk file failed. This can be set by gdbm_open (see Chapter 4
[Open]|, page 4), gdbm_export and gdbm_import functions.

GDBM_BAD_MAGIC_NUMBER
The file given as argument to gdbm_open function is not a valid gdbm file: it
has a wrong magic number.

GDBM_EMPTY_DATABASE
The file given as argument to gdbm_open function is not a valid gdbm file: it
has zero length.

GDBM_CANT_BE_READER
This error code is set by the gdbm_open function if it is not able to lock file
when called in ‘GDBM_READER’ mode (see Chapter 4 [Open]|, page 4).

GDBM_CANT_BE_WRITER
This error code is set by the gdbm_open function if it is not able to lock file
when called in writer mode (see Chapter 4 [Open], page 4).

GDBM_READER_CANT_DELETE
Set by the gdbm_delete (see Chapter 8 [Delete|, page 8) if it attempted to
operate on a database that is open in read-only mode (see Chapter 4 [Open]
page 4).

GDBM_READER_CANT_STORE
Set by the gdbm_store (see Chapter 6 [Store|, page 6) if it attempted to operate
on a database that is open in read-only mode (see Chapter 4 [Open]|, page 4).

)

Chapter 19: Error codes 26

GDBM_READER_CANT_REORGANIZE
Set by the gdbm_reorganize (see Chapter 10 [Reorganization|, page 11) if

it attempted to operate on a database that is open in read-only mode (see
Chapter 4 [Open]|, page 4).

GDBM_UNKNOWN_UPDATE
Currently unused. Reserved for future uses.

GDBM_ITEM_NOT_FOUND
Requested item was not found. This error is set by gdbm_delete (see Chapter 8
[Delete], page 8) and gdbm_fetch (see Chapter 7 [Fetch|, page 7) when the
requested key value is not found in the database.

GDBM_REORGANIZE_FAILED
The gdbm_reorganize function is not able to create a temporary database. See
Chapter 10 [Reorganization|, page 11.

GDBM_CANNOT_REPLACE
Cannot replace existing item. This error is set by the gdbm_store if the
requested key value is found in the database and the flag parameter is not
‘GDBM_REPLACE’. See Chapter 6 [Store|, page 6, for a detailed discussion.

GDBM_ILLEGAL_DATA
Either key or content parameter was wrong in a call to to gdbm_store (see

Chapter 6 [Store|, page 6).

GDBM_OPT_ALREADY_SET
Requested option can be set only once and was already set. This error is
returned by the gdbm_setopt function. See Chapter 14 [Options|, page 15.

GDBM_OPT_ILLEGAL
The option argument is not valid or the value argument points to an invalid
value in a call to gdbm_setopt function. See Chapter 14 [Options|, page 15.

GDBM_BYTE_SWAPPED
The gdbm_open function (see Chapter 4 [Open], page 4) attempts to open a
database which is created on a machine with different byte ordering.

GDBM_BAD_FILE_OFFSET
The gdbm_open function (see Chapter 4 [Open], page 4) sets this error code if
the file it tries to open has a wrong magic number.

GDBM_BAD_OPEN_FLAGS
Set by the gdbm_export function if supplied an invalid flags argument. See
Chapter 12 [Flat files], page 13.

Chapter 20: Compatibility with standard dbm and ndbm. 27

20 Compatibility with standard dbm and ndbm.

Gdbm includes a compatibility layer, which provides traditional ‘ndbm’ and older ‘dbm’ func-
tions. The layer is compiled and installed if the ‘--enable-1libgdbm-compat’ option is used
when configuring the package.

The compatibility layer consists of two header files: ‘ndbm.h’ and ‘dbm.h’ and the
‘libgdbm_compat’ library.

Older programs using ndbm or dbm interfaces can use ‘libgdbm_compat’ without any
changes. To link a program with the compatibility library, add the following two options
to the cc invocation: ‘-lgdbm_compat-lgdbm’. The ‘-L’ option may also be required,
depending on where gdbm is installed, e.g.:

cc ... -L/usr/local/lib -1lgdbm_compat -lgdbm
Please note that the compatibility library contains references to gdbm routines so the

order in which the libraries are linked is essential. This means that the library linking order
given in the above example must be respected.

Databases created and manipulated by the compatibility interfaces consist of two dif-
ferent files: ‘file.dir’ and ‘file.pag’. This is required by the POSIX specification and
corresponds to the traditional usage. Note, however, that despite the similarity of the nam-
ing convention, actual data stored in these files has not the same format as in the databases
created by other dbm or ndbm libraries. In other words, you cannot access a standard UNIX
dbm file with GNU dbm!

GNU dbm files are not sparse. You can copy them with the usual cp command and they
will not expand in the copying process.

20.1 NDBM interface functions.

The functions below implement the POSIX ‘ndbm’ interface:

DBM * dbm_open (char *file, int flags, int mode) [ndbm)]
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: ‘file.pag’ and ‘file.dir’. The flags and
mode arguments have the same meaning as the second and third arguments of open
(see section “open a file” in open(2) man page), except that a database opened for
write-only access opens the files for read and write access and the behavior of the
0_APPEND flag is unspecified.

The function returns a pointer to the DBM structure describing the database. This
pointer is used to refer to this database in all operations described below.

void dbm_close (DBM *dbf) [ndbm)]
Closes the database. The dbf argument must be a pointer returned by an earlier call
to dbm_open.

datum dbm_fetch (DBM *dbf, datum key) [ndbm]

Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.

If no matching record is found, the dptr member of the returned datum is ‘NULL’.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

Chapter 20: Compatibility with standard dbm and ndbm. 28

int dbm_store (DBM *dbf, datum key, datum content, int mode) [ndbm)]
Writes a key/value pair to the database. The argument dbf is a pointer to the DBM
structure returned from a call to dbm_open. The key and content provide the values
for the record key and content. The mode argument controls the behavior of dbm_
store in case a matching record already exists in the database. It can have one of
the following two values:

DBM_REPLACE
Replace existing record with the new one.

DBM_INSERT
The existing record is left unchanged, and the function returns ‘1°.

If no matching record exists in the database, new record will be inserted no matter
what the value of the mode is.

int dbm_delete (DBM *dbf, datum key) [ndbm)]
Deletes the record with the matching key from the database. If the function succeeds,
‘0’ is returned. Otherwise, if no matching record is found or if an error occurs, ‘-1’
is returned.

datum dbm_firstkey (DBM *dbf) [ndbm)]
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
‘NULL’. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

datum dbm_nextkey (DBM *dbf) [ndbm]
Continues the iteration started by dbm_firstkey. Returns the next key in the data-
base. If the iteration covered all keys in the database, the dptr member of the
returned datum is ‘NULL’. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.

The usual way of iterating over all the records in the database is:

for (key = dbm_firstkey (dbf);
key.ptr;
key = dbm_nextkey (dbf))
{
/* do something with the key */
}

The loop above should not try to delete any records from the database, otherwise the
iteration is not guaranteed to cover all the keys. See Chapter 9 [Sequential], page 9,
for a detailed discussion of this.

int dbm_error (DBM *dbf) [ndbm]
Returns the error condition of the database: ‘O’ if no errors occurred so far while
manipulating the database, and a non-zero value otherwise.

Chapter 20: Compatibility with standard dbm and ndbm. 29

void dbm_clearerr (DBM *dbf) [ndbm]
Clears the error condition of the database.

int dbm_dirfno (DBM *dbf) [ndbm)]
Returns the file descriptor of the ‘dir’ file of the database. It is guaranteed to be
different from the descriptor returned by the dbm_pagfno function (see below).

The application can lock this descriptor to serialize accesses to the database.

int dbm_pagfno (DBM *dbf) [ndbm]
Returns the file descriptor of the ‘pag’ file of the database. See also dbm_dirfno.

int dbm_rdonly (DBM *dbf) [ndbm]
Returns ‘17 if the database dbf is open in a read-only mode and ‘0’ otherwise.

20.2 DBM interface functions.

The functions below are provided for compatibility with the old UNIX ‘DBM’ interface. Only
one database at a time can be manipulated using them.

int dbminit (char *file) [dbm]
Opens a database. The file argument is the full name of the database file to be
opened. The function opens two files: ‘file.pag’ and ‘file.dir’. If any of them
does not exist, the function fails. It never attempts to create the files.

The database is opened in the read-write mode, if its disk permissions permit.

The application must ensure that the functions described below in this section are
called only after a successful call to dbminit.

int dbmclose (void) [dbm]
Closes the database opened by an earlier call to dbminit.

datum fetch (datum key) [dbm]
Reads a record from the database with the matching key. The key argument supplies
the key that is being looked for.

If no matching record is found, the dptr member of the returned datum is ‘NULL’.
Otherwise, the dptr member of the returned datum points to the memory managed
by the compatibility library. The application should never free it.

int store (datum key, datum content) [dbm]
Stores the key/value pair in the database. If a record with the matching key already
exists, its content will be replaced with the new one.

Returns ‘0’ on success and ‘-1’ on error.

int delete (datum key) [dbm)]
Deletes a record with the matching key.

If the function succeeds, ‘0’ is returned. Otherwise, if no matching record is found or
if an error occurs, ‘-1’ is returned.

Chapter 20: Compatibility with standard dbm and ndbm. 30

datum firstkey (void) [dbm]
Initializes iteration over the keys from the database and returns the first key. Note,
that the word ‘first’ does not imply any specific ordering of the keys.

If there are no records in the database, the dptr member of the returned datum is
‘NULL’. Otherwise, the dptr member of the returned datum points to the memory
managed by the compatibility library. The application should never free it.

datum nextkey (datum key) [dbm]
Continues the iteration started by a call to firstkey. Returns the next key in the
database. If the iteration covered all keys in the database, the dptr member of the
returned datum is ‘NULL’. Otherwise, the dptr member of the returned datum points
to the memory managed by the compatibility library. The application should never
free it.

Chapter 21: Problems and bugs. 31

21 Problems and bugs.

If you have problems with GNU dbm or think you’'ve found a bug, please report it. Before
reporting a bug, make sure you’ve actually found a real bug. Carefully reread the documen-
tation and see if it really says you can do what you’re trying to do. If it’s not clear whether
you should be able to do something or not, report that too; it’s a bug in the documentation!

Before reporting a bug or trying to fix it yourself, try to isolate it to the smallest possible
input file that reproduces the problem. Then send us the input file and the exact results
gdbm gave you. Also say what you expected to occur; this will help us decide whether the
problem was really in the documentation.

Once you've got a precise problem, send e-mail to bug-gdbm@gnu.org.

Please include the version number of GNU dbm you are using. You can get this informa-
tion by printing the variable gdbm_version (see Chapter 18 [Variables|, page 23).

Non-bug suggestions are always welcome as well. If you have questions about things
that are unclear in the documentation or are just obscure features, please report them too.

You may contact the authors and maintainers by e-mail:

phil@cs.wwu.edu, downsj@downsj.com, gray@gnu.org.ua

mailto:bug-gdbm@gnu.org
mailto:phil@cs.wwu.edu
mailto:downsj@downsj.com
mailto:gray@gnu.org.ua

Chapter 22: Additional resources 32

22 Additional resources

For the latest updates and pointers to additional resources, visit http://www.gnu.org/software/gdbm.
In particular, a copy of gdbm documentation in various formats is available online at
http://www.gnu.org/software/gdbm/manual.
Latest versions of gdbm can be downloaded from anonymous FTP:
ftp://ftp.gnu.org/gnu/gdbm, or via HTTP from http://ftp.gnu.org/gnu/gdbm, or
from any GNU mirror worldwide. See http://www.gnu.org/order/ftp.html, for a list of
mirrors.

To track gdbm development, visit http://puszcza.gnu.org.ua/projects/gdbm.

http://www.gnu.org/software/gdbm
http://www.gnu.org/software/gdbm/manual
ftp://ftp.gnu.org/gnu/gdbm
http://ftp.gnu.org/gnu/gdbm
http://www.gnu.org/order/ftp.html
http://puszcza.gnu.org.ua/projects/gdbm

Appendix A: GNU Free Documentation License 33

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008, 2011 Free Software
Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix A: GNU Free Documentation License 34

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix A: GNU Free Documentation License 35

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix A: GNU Free Documentation License 36

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix A: GNU Free Documentation License 37

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: GNU Free Documentation License 38

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix A: GNU Free Documentation License 39

10.

11.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 40

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . . Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index

Index

(Index is nonexistent)

41

	Copying Conditions.
	Introduction to GNU dbm.
	List of functions.
	Opening the database.
	Closing the database.
	Inserting and replacing records in the database.
	Searching for records in the database.
	Removing records from the database.
	Sequential access to records.
	Database reorganization.
	Database Synchronization
	Export and Import
	Error strings.
	Setting options
	File Locking.
	Test and modify a GDBM database.
	testgdbm invocation
	testgdbm interactive mode

	Export a database into a portable format.
	Useful global variables.
	Error codes
	Compatibility with standard dbm and ndbm.
	NDBM interface functions.
	DBM interface functions.

	Problems and bugs.
	Additional resources
	GNU Free Documentation License
	Index

